ELECTRICITY PRODUCTION IN THE RUSSIAN FEDERATION: ANALYSIS OF DYNAMICS AND FORECASTS
https://doi.org/10.48137/26870703_2025_32_4_52
Abstract
The article analyzes electricity production dynamics in the Russian Federation for the period 2010–2024 and develops forecast models for 2025–2027. The research covers electricity production from major power plant types: thermal, nuclear, and hydroelectric facilities, as well as total national production. Over the analyzed period, total electricity production increased by 16.5%, with the highest growth rates observed at nuclear and hydroelectric plants. The study provides a comparative analysis of two methodological approaches to forecasting: seasonal SARIMA autoregression models and LSTM recurrent neural networks. The investigation revealed varying degrees of predictability of indicators depending on power plant type. Total production and thermal power plant output demonstrated the best forecasting performance, while hydroelectric production exhibited high sensitivity to natural factors and consequently lower forecast accuracy. Based on the constructed models, expected electricity production volumes for the three-year period are determined. Forecast verification was conducted using operational data from the Federal State Statistics Service for early 2025, which confirmed acceptable accuracy of the proposed models for short-term and medium-term electricity production forecasting. The results of the study can be applied in the development of energy policy and strategic planning in Russia’s energy sector.
About the Authors
E. Yu. ChurilovaРоссия
Elvira Yu. CHURILOVA, PhD in Economics, Associate Professor, Associate Professor of the Business Analytics Department
49 Leningradsky Prospekt, Moscow, 125057
A. D. Churilova
Россия
Alexander D. CHURILOV, fourth-year student
78 Vernadsky Prospekt, Moscow, 119454
References
1. Alyunov A. N., Mosolova K. D., 2023. Forecasting Electricity Consumption Volumes Using Machine Learning Methods // Neurocomputers: Development, Application. Vol. 25. No. 5. pp. 58–70. DOI: 10.18127/j19998554-202305-08. (In Russ.)
2. Borodin A. E., 2024. Analysis of Barriers to the Development of the Electric Power Industry in Russia: History, Current Status, and Prospects // Bulletin of the Astrakhan State Technical University. Series: Economics. No. 1. pp. 74–81. DOI: 10.24143/2073-5537-2024-1-74-81. (In Russ.)
3. Valiullin A. E., 2022. Study of Trends in Energy Resource Consumption in Russian Industry Based on Statistical Energy Balance // Bulletin of the Belgorod University of Cooperation, Economics and Law. No. 3(94). pp. 146–154. DOI: 10.21295/2223-5639-2022-3-146-154. (In Russ.)
4. Vasiliev G. V., Berdonosov V. D., 2022. Methodology for the Effective Application of Hybrid Neural Network Models for Forecasting Energy Consumption // Electrical Systems and Complexes. No. 4(57). pp. 88–95. DOI: 10.18503/2311-8318-2022-4(57)-88-95. (In Russ.)
5. Vladimirov S. S., 2022. Analysis of the Problems of the Electric Power Industry and Strategic Ways to Address Them // Competitiveness in the Global World: Economics, Science, Technology. No. 9. pp. 24–26. (In Russ.)
6. Vymyatnina Yu. V., Raskina Yu. V., Artyukhova E. V., Babkina E. A., 2022. Market Reforms in the Electric Power Industry: Arguments for and Against // Economic Journal of the Higher School of Economics. Vol. 26. No. 3. pp. 404–428. DOI: 10.17323/1813-8691-2022-26-3-404-428. (In Russ.)
7. Vyalkova S. A., Morgoeva A. D., Gavrina O. A., 2022. Development of a hybrid model for forecasting electric energy consumption for a mining and metallurgical enterprise // Sustainable development of mountain territories. Vol. 14. No. 3(53). P. 486–493. DOI: 10.21177/1998-4502-2022-14-3-486-493. (In Russ.)
8. Gilmutdinova I. M., Nuryakhmetova S. M., Fatkhutdinova O. A., 2022. Analysis of Development Trends in the Russian and Foreign Electric Power Industry // Economy and Entrepreneurship. No. 5 (142). Pp. 111–117. DOI: 10.34925/EIP.2022.142.5.020. (In Russ.)
9. Demyanenko T. S., Semenenko L. M., 2024. Construction of the Trend Component of an Additive Mathematical Model of the Volume of Planned Electric Energy Production to Improve Energy Efficiency // Bulletin of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences. Vol. 26. No. 4. Pp. 71–82. DOI: 10.35330/1991-6639-2024-26-4-71-82. (In Russ.)
10. Zatonsky A. V., Tugashova L. G., 2021. Selecting a model for forecasting thermal energy supply // Thermal Power Engineering. No. 3. P. 89–98. DOI: 10.1134/S0040363621020090. (In Russ.)
11. Karpenko S. M., Karpenko N. V., Bezginov G. Yu., 2022. Forecasting Electricity Consumption at Mining Enterprises Using Statistical Methods // Mining Industry. No. 1. pp. 82–88. DOI: 10.30686/1609-9192-2022-1-82-88. (In Russ.)
12. Karyakina I. E., Maksimov V. P., Kulishova A. Yu., 2022. Problems and Prospects of the Electric Power Industry of the Russian Federation // Economy and Entrepreneurship. No. 7(144). pp. 103–110. DOI: 10.34925/EIP.2022.144.7.016. (In Russ.)
13. Modernization of Russia’s Energy Infrastructure: Energy Saving and Improving Efficiency in the Market [Electronic resource] // Business Profile. Access mode: https://delprof.ru/press-center/open-analytics/modernizaciya-ehnergeticheskojinfrastruktury-rossii/ Date of access: 21.04.2025. (In Russ.)
14. Morgoeva A. D., Morgoev I. D., Klyuev R. V., Gavrina O. A., 2022. Forecasting electric energy consumption by an industrial enterprise using machine learning methods // Bulletin of Tomsk Polytechnic University. Georesources Engineering. Vol. 333. No. 7. pp. 115–125. DOI: 10.18799/24131830/2022/7/3527. (In Russ.)
15. Nekrasov S. A., 2022. Growth of Electricity Consumption in Russian Regions as a Factor in Their Socioeconomic Development // Regional Economy. Vol. 18. No. 2. pp. 509–527. DOI: 10.17059/ekon.reg.2022-2-15. (In Russ.)
16. Noskov S. I., Popov E. S., Seredkin S. P., 2023. Variant Regression Modeling of Electricity Production in the Russian Federation // Bulletin of the Dagestan State Technical University. Technical Sciences. Vol. 50. No. 1. pp. 123–129. DOI: 10.21822/2073-6185-2023-50-1-123-129. (In Russ.)
17. Sadov S. L., 2022. Comparative assessment of information uncertainty in forecast models of energy industries // Corporate governance and innovative development of the Northern economy: Bulletin of the Research Center for Corporate Law, Management and Venture Investment of Syktyvkar State University. Vol. 2. No. 4. Pp. 438-446. DOI: 10.34130/2070-4992-2022-2-4-438. (In Russ.)
18. Surkov A. A. “Building a Combined Forecast in R// RISK: Resources, Information, Supply, Competition.” 2022, No. 3, pp. 116–122. DOI: 10.56584/1560-8816-2022-3-116-122. (In Russ.)
19. Federal State Statistics Service. Industrial Production. // https://rosstat.gov.ru/enterprise_industrial, accessed 01.05.2025. (In Russ.)
20. Khomutov S. O., Serebryakov N. A., 2023. “A Neural Network Algorithm for ShortTerm Forecasting of Agricultural Producers’ Electricity Consumption.” Bulletin of the Altai State Agrarian University. No. 12(230). pp. 95–99. DOI: 10.53083/1996-4277-2023-230-12-95-99. (In Russ.)
21. Aguirre Rodríguez E. Ya., Rodríguez Gamboa A. A., Aguirre Rodríguez E. C. [et al.], 2022. Comparison of adaptive neuro-fuzzy inference system (ANFIS) and machine learning algorithms for electricity production forecasting // IEEE Latin America Transactions. Vol. 20. № 10. С. 2288–2294. DOI: 10.1109/tla.2022.9885166.
22. Akbal Y., Ünlü K.D., 2022. A univariate time series methodology based on sequenceto-sequence learning for short to midterm wind power production // Renewable Energy. Vol. 200. P. 832–844. DOI: 10.1016/j.renene.2022.10.055
23. Bilgili M., Pinar E., 2023. Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye // Energy. Vol. 284. P. 128575. DOI: 10.1016/j.energy.2023.128575
24. Gellert A., Fiore U., Florea A. [et al.], 2022. Forecasting Electricity Consumption and Production in Smart Homes through Statistical Methods // Sustainable Cities and Society. Vol. 76. P. 103426. DOI: 10.1016/j.scs.2021.103426.
25. Gulay E., Sen M., Akgun O. B., 2024. Forecasting electricity production from various energy sources in Türkiye: A predictive analysis of time series, deep learning, and hybrid models // Energy. Vol. 286. P. 129566. DOI: 10.1016/j.energy.2023.129566
26. Klyuev R. V., Morgoeva A. D., Morgoev I. D. [et al.], 2022. Methods of Forecasting Electric Energy Consumption: A Literature Review // Energies. Vol. 15. No. 23. P. 8919. DOI: 10.3390/en15238919.
27. Lee M., Ser Ye., Selvachandran G. [et al.], 2022. A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models // Mathematics. Vol. 10, No. 8. P. 1329. DOI: 10.3390/math10081329.
28. Ozbek A., Yildirim A., Bilgili M., 2021. Deep learning approach for one-hour ahead forecasting of energy production in a solar-PV plant // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. Vol. 44 No. 4. P. 10 465–10 480. DOI: 10.1080/15567036.2021.1924316
29. Popławski T., Dudzik S., Szeląg P., 2023. Forecasting of Energy Balance in Prosumer Micro-Installations Using Machine Learning Models// Energies. Vol. 16. No. 18. P. 6726. DOI: 10.3390/en16186726.
30. Solyali D. A., 2020. Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus // Sustainability. Vol. 12. No. 9. P. 3612. DOI 10.3390/su12093612.
31. Yörük G., Bac U., Yerlikaya-Özkurt F., Ünlü K. D., 2023. Strategic Electricity Production Planning of Turkey via Mixed Integer Programming Based on Time Series Forecasting // Mathematics. Vol. 11. No. 8. P. 1865. DOI: 10.3390/math11081865.
Review
For citations:
Churilova E.Yu., Churilova A.D. ELECTRICITY PRODUCTION IN THE RUSSIAN FEDERATION: ANALYSIS OF DYNAMICS AND FORECASTS. Geoeconomics of Energetics. 2025;(4):52-77. (In Russ.) https://doi.org/10.48137/26870703_2025_32_4_52
JATS XML
